Focus on innovation: new episodes of NBC Learn update on batteries built using viruses and explore biomedical applications of 3D printing

Science of Innovation – a video series – documents how researchers “imagine, invent, improve and inspire” to deliver solutions in health care, energy storage and transportation, to highlight just a few of the sectors mentioned.

Launched in 2012 to celebrate the 165th birthday of Thomas Edison, the videos are produced by NBC Learn in partnership with the National Science Foundation and the United States Patent and Trademark Office.

New episodes
This month, the team has added six more episodes, including clips on the work of Angela Belcher at MIT, and also featuring Adam Feinberg’s group at Carnegie Mellon University.

Belcher’s use of genetically engineered viruses to grow better batteries is the application that often hits the headlines, but her team is also looking at using the technique to improve solar cells, fuel cells, biofuels and cancer therapies. Feinberg is part of the research community applying 3D printing to solve challenges in healthcare, which includes accelerating drug development and advancing personalized medicine.

Device applications for genetically engineered viruses

Overcoming challenges in 3D bioprinting

More videos in the Science of Innovation series
Other topics featured in the new episodes include the microfabrication of cochlear implants; the use of friction stir welding as a tool for tailoring the strength of metallic components; the application of origami structures to enable the transport and easy deployment of large area devices (such as solar arrays); as well as the development of microcontrollers for virtual reality displays.

Read next
An interview with Gabor Forgacs: from theoretical physics to the business of 3D bio-printing (published in the journal Translational Materials Research)

Open for submissions: TMR focus collection on biomaterials
Guest Editor – Subbu Venkatraman, Nanyang Technological University, Singapore
Since the early days of the artificial hip joint, when metallic, polymeric and even ceramic biomaterials were first implanted as hard-tissue replacements, both natural and synthetic biomaterials have become increasingly important for prolonging as well as improving our quality of life. Building functional body parts from many different material types is now commonplace; transplanting these parts with long-term survivability have become reasonably safe procedures for surgeons. Some of these technologies have progressed so far that the concept of a ‘bionic man’ with several replacement body parts is no longer confined to the world of science fiction [more details].

Related stories
Virus creates nanoelectrode for battery (nanotechweb.org)

Fullerex updates bulk graphene pricing report; highlights market opportunities for 2D materials

What are the price points that graphene and its derivatives need to hit to access market opportunities in composites, lubricants, 3D printing, concrete and other target applications? Who are the leading global suppliers and what are the sweet spots for the various grades of the material, which range from few-layer sheets to much larger stacks of graphene nanoplatelets?

Fullerex, an advanced materials and technology brokerage, which works with nanomaterial producers and end-users to support applications development and commercialisation, has set out to answer these questions and more in its annual bulk graphene pricing report, now updated for 2016.

Supply landscape: the number of companies offering bulk graphene compared with providers of thin-film material (source: Fullerex)

Supply landscape: the number of companies offering bulk graphene compared with providers of thin-film material (source: Fullerex)


Bulk graphene is offered by producers as a functional filler to improve the properties of base materials. These additives can be sold into a wide range of industries, but which sectors offer the strongest prospects for suppliers?

Business case
One of the fastest moving opportunities for graphene producers is the emerging 3D-printing market. Suppliers of FDM 3D printing consumables in Europe and the US are facing competition from Chinese firms producing spools at lower cost. “Established companies need to differentiate their products to protect their margins and nanomaterials provide a way to do this,” Tom Eldridge, director at Fullerex told TMR+. “Adding graphene can make the filament conductive or high strength and expands the number of applications that 3D-printed parts can address.”

With relatively few materials to choose from, the 3D printing community has a healthy appetite for new products to print with, which plays well for graphene producers. The downside is that the volume of nanomaterials required is likely to be relatively low, so graphene suppliers will need to look to larger markets to justify investments in scaling up facilities.

Longer term, one of the biggest opportunities for bulk graphene could be in construction. “Concrete is the second most consumed material after water and represents a potentially huge market for graphene in terms of volume, but it will be much tougher for producers to demand premium prices,” Eldridge points out. “In this sector, it’s essential to get costs down so that your material is as competitive as possible and to achieve a favourable price-to-performance ratio,”

The benefits of adding graphene to concrete include improvements in compressive strength and flexural modulus, but the nanomaterial could also deliver sensor properties and assist in the detection of micro-cracks to monitor the ‘health’ of a structure.

To break into target markets large and small, graphene producers need to get a handle on which applications are going to make the most commercial sense to potential customers. There are other issues too. “Standardization is on everyone’s mind, and is being worked on,” comments Eldridge. “Over a shorter time-frame, consistency from individual suppliers is the key priority to get commercial-use graphene based products and systems onto the market.”

Read next

From the journal Translational Materials Research (TMR) –

AH_60What can 2D materials learn from 3D printing?
Analysing the trajectory followed by 3D printing suggests commercialization strategies for 2D innovators and could help bring graphene’s unicorn milestone forward by a decade.

TMR_60Graphene Connect underscores the importance of engaging SMEs in materials commercialization
European workshop series aims to accelerate the uptake of new materials by developers and quicken the translation of academic research into products

RH_60Lean startup for materials ventures and other science-based ventures: under what conditions is it useful?
Rainer Harms and his co-authors examine the lean startup approach as a framework for technology entrepreneurship

AC_60From composite material technologies to composite products: a cross-sectorial reflection on technology transitions and production capability
How do composite material technologies create growth and how do the properties of those materials influence production capability and manufacturability?

TRAM 2015: aerospace industry embraces additive manufacturing

Additive manufacturing (AM) is a major opportunity for materials translation. Layer-by-layer fabrication gives designers the freedom to specify lightweight and highly-integrated components that would be impossible to manufacture using conventional machining or forging techniques. To find out what AM can deliver today and to discuss what’s in the pipeline, TMR+ spoke to presenters at Trends in Advanced Machining, Manufacturing and Materials (TRAM) 2015 – an event supported by Boeing and organized by the UK’s Advanced Manufacturing Research Centre.

For the aerospace industry additive manufacturing is synonymous with powder metallurgy. At the meeting, Robert Smith Graham of Carpenter Technology described the gas atomization technique used by his company to produce powders of alloys based on nickel, iron, cobalt and – in a new venture for the firm – titanium.

Smith Graham stressed the need to define standard metrics for the metallic powders used for aircraft parts, as well as agreed measurement techniques. “The additive manufacturing community has already identified this key issue, and work is already underway with academic institutions, research agencies and other manufacturers to define standard specifications,” he said. “Particle size distribution is one important parameter, and we need to find a consistent way to measure this and other key properties.”

Greg Hyatt of DMG Mori Seiki, a manufacturer of machine tools, highlighted that innovation in laser technology has been crucial for making the technique a viable proposition for aerospace applications. “Commercial laser systems are now capable of producing powers of up to 10 kW,” he said. “This means that we can now deposit kilograms of material per hour rather than grams, which makes the whole process much more cost efficient.”

Hybrid approach
Even so, Hyatt believes that more innovation is need to make additive manufacturing cost-competitive with other metal-processing techniques. He points out that build costs could be reduced significantly by depositing layers onto standard forged parts. “This approach retains the robust mechanical properties of the forged piece, and then additive manufacturing can be used to create fine structures on the part surface. This offers real added value at a much lower cost.”

At the same time, additive manufacturing is becoming more precise, making it possible to tailor the mechanical properties for different areas of the component. “We have case studies where we have deposited materials onto existing parts at rates of more than 10 kg per hour,” said Hyatt. “We have also demonstrated how precise additive manufacturing can yield layers with graded composition.”

Hyatt wasn’t able to share the detail of the case studies, but said that good results have been achieved for a rocket motor nozzle. These components must accelerate a large volume of combustion gases to supersonic velocities within a very short distance, and so must be made from materials that can withstand extreme forces and thermal loading. At the same time, their complex structure requires a number of different machining processes to produce using conventional manufacturing techniques.

According to Hyatt, this highly functional type of part is the current sweet spot for additive manufacturing in the aerospace industry. But, as other talks at the conference revealed, many other applications are waiting in the wings for this truly disruptive technology.

Related stories on TMR+

Arkema emphasises 3D printing in its materials research agenda
Show report: Metal additive manufacturing 2014 (Sheffield, UK)

– Submit your article on additive manufacturing to the journal Translational Materials Research (TMR).

Arkema emphasises 3D printing in its materials research agenda

Layer-by-layer fabrication has long been used for industrial prototyping, but a boom in lower-cost, desktop 3D printers is broadening its appeal and materials suppliers are responding as markets for these versatile tools expand.

Polymer pellets. Image credit: Arkema.

Polymer pellets. Image credit: Arkema.

This week, Arkema – whose company history goes back to a reorganization of Total’s intermediate chemicals group in 2004 – announced that it is adding 3D printing as a 6th ‘innovation driver’ for its international research and development (R&D) operation. ‘Materials for 3D printing’ joins existing R&D programmes in ‘lighter materials’, ‘renewable raw materials’, ‘materials for energy’, ‘water treatment solutions’ and ‘materials for electronics’.

Arkema offers polymers for laser sintering as well as UV-curable resins, and is developing formulations that can be used to make extremely tough 3D-printed products. But it’s not just the big firms that are busy innovating and ramping up the range of materials available to the growing 3D printing community. Materials start-ups and university labs are also participating in the translation of novel feedstock.

In fact, a web-search reveals a curious array of 3D printable materials, which includes coffee (3Dom USA), coconut (Formfutura), seaweed (University of Wollongong) and graphene (Black Magic 3D).

Related stories on TMR+
Materials and equipment upgrades add to 3D printing’s appeal

Related articles in the journal Translational Materials Research (TMR)
What can 2D materials learn from 3D printing? (Andrew Haughian 2015 Transl. Mater. Res. 2 020201)

Related stories on the web
A*STAR’s IMRE invents highly conducive material for 3D-printing of circuits
Oxford Performance Materials launches 3D printing technology for aerospace and industrial applications

Nominations now open for 2015 MATERIALICA awards

MATERIALICA has been championing new materials and innovative applications since launching its awards program in 2003. “We honour products which combine outstanding design and high technology expertise,” explained Robert Metzger, jury member and organizer of the MATERIALICA Design + Technology Award.

Boosting the thermal conductivity of plastics

2014 winner SILATHERM (image credit: Quartzwerke Gmbh)

Last year‘s winners include Budenheim’s Excelion material, which is used to advance lithium ion batteries, and SILATHERM from HPF, which improves the thermal conductivity of plastics without downgrading the electrically insulating properties of the host substance. Also recognised in 2014 were LZN Laser Zentrum Nord and EDAG Engineering – co-recipients of the silver award for surface technology. The prize acknowledges the winners’ use of 3D printing to enable a multifunctional aluminium housing for electric vehicles, which weighs just 900 g compared with 1900 g for the reference casting.

In 2013, I-MEET (Institute of Materials for Electronics and Energy Technology, University Erlangen-Nuremberg) won the gold product award for its solution-processed flexible semitransparent organic solar cells. The modules are laser patterned and feature silver nanowire meshes as top and bottom electrodes. Applications for the devices include windows (the cells exhibit 56% transmittance at 550 nm) and skylights.

The deadline for submitting nominations to the selection committee is 17 July 2015. Application forms and further details can be found by visiting materialica.com

Related stories on TMR+

3D printing (6 stories)

Show report: Metal additive manufacturing 2014 (Sheffield, UK)

As promised in the flyer, the Association of Laser Users (AILU) event brought together a mix of additive manufacturing (AM) experts from industry and academia to discuss the tough topics that are all too often ignored in the media hype surrounding 3D printing. Split into four sessions, the meeting was chaired by Robert Scudamore from manufacturing and fabrication consultants TWI.

Setting the scene
The aerospace sector is a prime candidate for lightweight, lattice structures that are easy to build using AM tools. Also, 3D printers enable a high-level of part customization, which benefits medical implants and patient-specific surgical tools. But both aerospace and medical sectors require significant materials and process qualification.

Also, there are setup costs to factor in. Additive techniques such as 3D printing use much less material than subtractive processes such as milling, but the initial materials outlay can still be high. For example, filling an industrial laser sintering machine with virgin titanium powder can cost thousands of pounds.

Speed of production is another issue, with some parts taking hundreds of hours to build.

Reality check
One of the first speakers to start busting the myths was Robin Wilson from the UK’s Technology Strategy Board (TSB). “Additive manufacturing is not just printing from CAD,” he told delegates. Potential users need to consider the whole process, which as Wilson points out involves a significant “digital data supply chain” and physical “post-processing” of the finished component.

Stéphane Abed of Poly-Shape, who also spoke at the meeting, manufactures parts using a tool path that co-ordinates four beams. These multiple lasers can build several smaller components at once or construct different sections of a single work-piece simultaneously, to improve production rates. But having multiple optical-trains also ramps up the number of variables in the process.

Listening to the presentations, it’s clear that AM has no shortage of parameters that influence the quality of the manufactured part – laser power, writing speed, powder flow rate (for nozzle-blown setups), particle size distribution and recycle rate, are just a few.

It can be done
Throughout the day, process control remained a key talking point. Trevor Illston of Materials Solutions, who led the final session of talks, is optimistic that AM can be controlled to a “production standard” by inspecting workpieces at multiple points in the AM process.

Giving the audience food for thought, Illston added that there can be a downside to the design freedom that 3D printing brings to the table, as it’s possible to create parts that are incredibly difficult to examine!

In general though, unlocking traditional design constraints is a big win for AM – and despite the production challenges, all of the speakers recognized that major opportunities are up for grabs.

The medical sector is a growth area for AM, not just for implants, but also for custom tools such as cutting blocks to guide surgery. Medical centres are looking at options for manufacturing parts in hospital to speed up delivery to the patient. Ideas here include flat-packed production tools that can be sterilized and then assembled in theatre.

“AM often solves one problem beautifully, but it can create other issues,” said Edward Draper of JRI Orthopaedics, who spoke in the opening session. Draper picked up on Wilson’s earlier remark about post-build processing, and emphasised the requirement for cleaning and polishing.

Something new
Images of medical devices, helicopter components and fixtures for satellites are becoming a familiar sight at AM conferences and events, but Neil Burns of Croft Engineering had something new for the audience – filtration parts. Traditionally, Croft Engineering has made filtration supports by shaping wire mesh, but the bending process leads to apertures that are non-uniform. To get around this, Burns showed how his company uses AM (inspired by a trip to Fab Lab in Manchester, UK) to build filtration supports with holes that are aligned to the direction of fluid flow – a design feature that saves customers money by reducing the amount of energy that’s required to pump liquid through the component. Despite the benefits, Burns revealed that clients can be cautious about using AM parts. They fear downtime caused by mechanical failure.

But what is the effect of AM on materials performance? How do AM samples behave under load compared with material that has been cast or milled? AM components might look fine on the outside, but what’s happening to the internal structure of the material? Also, how does the strength of parts made using different machines compare, or parts that are built on the same machine, but formed using a different tool path, or using powders with a different particle size distribution or storage history?

Team effort
To tackle this, AM needs its own materials database and standards – a point made by many attendees, including Neil Mantle of Rolls-Royce. What’s more, the task requires a collaborative effort. Contributions so far include EU initiatives such as SASAM (Support Action for Standardisation in Additive Manufacturing) and the UK’s ANVIL project to establish benchmarks and design guides for AM.

A continuing development is the use of technology hubs to support AM projects at technology readiness levels (TRL) 4-6, or in other words to translate projects from proof-of-concept to pilot-scale operation.

David Wimpenny from the UK’s Manufacturing Technology Centre (MTC), which was established in 2010 to bridge the gap between academia and industry, was at the event. “Our role is to make parts that industry can relate to in terms of size and quality,” he explained.

Today, the MTC is part of the UK’s high value manufacturing (HVM) catapult – a network of seven technology centres with a shared goal of accelerating process innovation.

Related links –

Metal Additive Manufacturing: opportunities in applications and improvements in process technology (full programme)

Materials and equipment upgrades add to 3D printing’s appeal

Back in 2013, TMR+ hinted that the arrival of new feedstocks such as TPU 92A-1 – a flexible and durable thermoplastic – would make 3D printers a much more compelling proposition for product developers. Building on this, there are other factors to consider too –

Commercial additive manufacturing (AM) tools with multiple nozzles are paving the way for 3D-printed workpieces with tailored materials properties – the Objet500 Connex3 is a recent example.

In the lab, researchers are exploring AM designs that combine 3D and ink-jet printing, which bring additional functionality through the use of conductive and other custom inks.

3D printers such as the Freeformer from German production tool maker Arburg further extend the choice of starting materials by accepting granulated feedstock rather than specialized spools of pre-formed material that can turn out to be an expensive option for users.

“The mark-up on feedstock for 3D printing can be anywhere from 10 to 100 times the cost of the raw material, so the Arburg tool could be one way around that,” Anthony Vicari of Lux Research told TMR+. “It’s not just about cheaper materials though, there are other benefits,” he added, “you put your material through one less melt cycle, which should reduce product degradation.”

Vicari and his team have recently updated their projections for high-performance thermoplastics and see additive manufacturing as a growth area for this family of materials as 3D printing migrates from prototyping to manufacturing.

Process improvements are also making an impact.

For example, optics specialist LUXeXcel is using a slow curing technique to upgrade the performance of components printed from transparent resins for use in LEDs and other devices. The approach is designed to combat the formation of stepped features that would otherwise occur as a consequence of layer-by-layer fabrication.

Switching from plastics to ceramics, Vicari mentions Ceralink as another example. The US firm has developed a method for producing silicon carbide/silicon carbide composites using powder bed inkjet 3D printers.

The composite material is said to offer lighter weight, higher temperature performance, and higher wear resistance than nickel alloys and titanium alloys for aerospace jet engine components, and this highlights where 3D printing will have the biggest impact – when it brings something different to the process of translating new materials into devices.

Conventional volume manufacturing techniques such as injection molding will always be cheaper on a per unit basis, but this misses the point of 3D printing.

Commercial outlook

3D printing: applications and market size (click on image to enlarge). Source: Lux Research

3D printing: applications and total addressable market (click on image to enlarge). Source: Lux Research

Some of the unique selling points of AM include customization for market segments such as orthapedic implants, prosthetics and sporting goods. Another positive is product assembly.

“With 3D printing you can often manufacture several parts as one piece, which reduces construction costs, but can also save on regulatory filings too,” Vicari points out.

The on-demand nature of AM means that 3D printing could help firms to reduce product inventory (as well as tooling storage) and lower warehouse costs. It also offers supply-chain security in sectors such as space and defence, by enabling on-site production of replacement parts.

Related links

TPU 92A-1 datasheet (PDF via materialise.com)

Stratasys’ Big Announcement — Multi-colour, Multi-material 3D Printing with the New Objet500 Connex3 (3dprintingindustry.com)

Printing Batteries – new inks and tools allow 3-D printing of lithium-ion technology (MIT Technology review)

3D Printed Silicon Carbide: Ceralink’s Novel Production Process for Jet Engine Material (luxresearchinc.com/blog)

MRS Fall 2013 highlights – part five (final)

Graphene goes 3D

Switching from the talks to the exhibit, I just wanted to highlight something that I spotted over at the Graphene Labs booth. The firm has announced a spin-off dubbed Graphene 3D Labs, which provides spools of graphene-loaded polymer for use in commercial 3D printers.

In fact, it’s hard to escape 3D printing at the moment. A new Makerbot store opened this week on the walk from my hotel to the convention centre here in Boston.

Further reading on TMR+

MRS Fall 2013 highlights – part four
MRS Fall 2013 highlights – part three
MRS Fall 2013 highlights – part two
MRS Fall 2013 highlights – part one

Show report: 3D printing & additive manufacturing 2013

3D printers and their extended family of additive manufacturing (AM) tools have been dismissed by some as being too slow for mass-production, but there are game-changing opportunities on the horizon – as highlighted at yesterday’s industry summit in London. Big names such as Airbus, Boeing, EADS, Bayer, IBM and Volvo are looking at the technology in a positive light.

Bernhard Müller from the Fraunhofer Institute for Machine Tools and Forming Technology began the day by summarizing the state of play, pointing out AM’s origins as a design tool, but adding that production teams are becoming more involved with the technology.

Dyson is one of many, many firms making great use of AM for rapid prototyping and has three EOS selective laser sintering machines, two Ipro 8000 stereolithography systems and two Eden Objet 3D printers running almost full-time to road-test new product ideas.

But Jessica Middlemiss, senior materials engineer at the firm, flagged up the mismatch between the material properties of the AM components compared with downstream injection moulded versions – an issue that makes it much harder to predict final product performance.

Help could be on its way though.

Thomas Buesgen, senior project manager 3D printing at Bayer Material Science, revealed that they are working hard to provide materials for AM that are more elastic, highlighting a new product – TPU 92A-1 – a thermoplastic designed for SLS systems that is being marketed as the first fully-functional flexible material in 3D printing.

Buesgen also observes that the injection moulding sector is keeping a much closer eye on AM, another sign that layer-by-layer assembly is being taken more seriously in manufacturing circles.
Continue reading

Additive manufacturing: building the bigger picture

Low-cost 3D printers have done a great job of putting additive manufacturing (AM) – the process of making objects layer upon layer – on the map, but they only scratch the surface of what this approach has to offer. To see the full range of opportunities, it’s worth taking a deeper look.

The European collaboration of rapid manufacturing has done just that and its 2013 Strategic Research Agenda (SRA) report (PDF) is a worthwhile read for anyone wanting to know more about a field that also goes by the name of direct digital manufacture or e-manufacturing.

Frits Feenstra, who co-ordinates the platform, is well versed in AM, which encompasses a range of processes such as powder bed fusion, directed energy deposition and material jetting.

“3D printing brings something different to the party,” he told delegates at COMS 2013. To support the comment, Feenstra points out that AM gives you the opportunity to embed sensors or to integrate multiple materials and create graded structures with a distribution of physical properties.

Continue reading