Graphene Connect: bridging academia and industry

As Europe’s Graphene Flagship enters its third year, we highlight how the programme is supporting the commercialization of 2D materials through Graphene Connect – a series of interactive workshops that bring industry and academia together.

“I think the Graphene Connect workshop we attended was a great opportunity to measure the pulse on the applications,” said Amer Ali, CEO of Graphensic AB – a Swedish company producing graphene on silicon carbide. “At the event, we got in touch with skilled researchers and industry incumbents who were genuinely interested in what we do.”

Biomedical briefing
Kostas Kostarelos, who leads the Nanomedicine Lab at the University of Manchester, UK, was a keynote speaker at Graphene Connect’s most recent workshop, which took place in February and showcased opportunities for 2D materials in biomedical technology. “The workshops are so important because they help to give companies a better understanding of graphene and how it can shape their roadmap going forward,” he explained.

More workshops planned for 2016: the organizing team is in the process of finalizing the next graphene connect event and will be announcing full details shortly on their website.

Applications discussed at the February workshop included smart clothes, sensor systems, wearables, packaging, electrodes and other ways that graphene can be used within the body. The events also provide the opportunity for a wider conversation on 2D materials.

“I wanted to understand more about the ‘translational potential’ and associated risk of graphene as well as the medical applications,” added Daniel Chew, Director of Neural Interfaces for GlaxoSmithKline. “Attending Graphene Connect helped to answer a lot of my questions and it was really good to see a wide interest in graphene from different industry sectors.”

Hot topics
The first Graphene Connect event took place in 2014, as part of Graphene Week, and themes covered so far by the workshop series include – nanocomposites, sensors, energy, optoelectronics and photonics, materials and production, investment opportunities and, as mentioned above, biomedical technology.

Further reading
Graphene Connect underscores the importance of engaging SMEs in materials commercialization (Translational Materials Research)
Graphene Week 2015: industry opportunities and more (TMR+)

Opportunities for metal mesh, silver nanowires, carbon nanotubes, graphene and other non-ITO transparent conductive films in the touch display industry and elsewhere

The touch panel sector, which has been growing explosively over the past decade, offers tremendous opportunities for new materials and next-generation technologies, but only if developers can accurately grasp market requirements, and identify the sweet spots for their products and services. Jennifer Colegrove, industry analyst and founder of Touch Display Research, has been covering the market in detail since 2006. In this guest post for TMR+, she looks at how the sector has matured, explains why ITO transparent conductive films (TCFs) remain dominant despite their disadvantages and assesses the prospects for new materials.

Overview 2006 – 2020
Touch Display Research forecasts that the touch module revenue will reach $36 billion by 2020, from just $2 billion in 2006.

Figure 1. Touch Module Market Forecast (Image credit: Touch Display Research).

Figure 1. Touch Module Market Forecast (Image credit: Touch Display Research).

Touch screen suppliers, especially those providing projected capacitive touch modules – a popular choice for smart phones and tablets as the technology supports multi-touch gestures – have been mostly profitable during 2007 and 2009. But fast forward to 2016 and the competition is fierce with many touch screen suppliers encountering net losses in recent years as manufacturing capacity has outstripped demand, pushing down panel prices. To become a leader or maintain a leadership position in today’s touch industry, providers need to enhance their offering to customers and introduce new features to drive profits. Continue reading

Fullerex updates bulk graphene pricing report; highlights market opportunities for 2D materials

What are the price points that graphene and its derivatives need to hit to access market opportunities in composites, lubricants, 3D printing, concrete and other target applications? Who are the leading global suppliers and what are the sweet spots for the various grades of the material, which range from few-layer sheets to much larger stacks of graphene nanoplatelets?

Fullerex, an advanced materials and technology brokerage, which works with nanomaterial producers and end-users to support applications development and commercialisation, has set out to answer these questions and more in its annual bulk graphene pricing report, now updated for 2016.

Supply landscape: the number of companies offering bulk graphene compared with providers of thin-film material (source: Fullerex)

Supply landscape: the number of companies offering bulk graphene compared with providers of thin-film material (source: Fullerex)

Bulk graphene is offered by producers as a functional filler to improve the properties of base materials. These additives can be sold into a wide range of industries, but which sectors offer the strongest prospects for suppliers?

Business case
One of the fastest moving opportunities for graphene producers is the emerging 3D-printing market. Suppliers of FDM 3D printing consumables in Europe and the US are facing competition from Chinese firms producing spools at lower cost. “Established companies need to differentiate their products to protect their margins and nanomaterials provide a way to do this,” Tom Eldridge, director at Fullerex told TMR+. “Adding graphene can make the filament conductive or high strength and expands the number of applications that 3D-printed parts can address.”

With relatively few materials to choose from, the 3D printing community has a healthy appetite for new products to print with, which plays well for graphene producers. The downside is that the volume of nanomaterials required is likely to be relatively low, so graphene suppliers will need to look to larger markets to justify investments in scaling up facilities.

Longer term, one of the biggest opportunities for bulk graphene could be in construction. “Concrete is the second most consumed material after water and represents a potentially huge market for graphene in terms of volume, but it will be much tougher for producers to demand premium prices,” Eldridge points out. “In this sector, it’s essential to get costs down so that your material is as competitive as possible and to achieve a favourable price-to-performance ratio,”

The benefits of adding graphene to concrete include improvements in compressive strength and flexural modulus, but the nanomaterial could also deliver sensor properties and assist in the detection of micro-cracks to monitor the ‘health’ of a structure.

To break into target markets large and small, graphene producers need to get a handle on which applications are going to make the most commercial sense to potential customers. There are other issues too. “Standardization is on everyone’s mind, and is being worked on,” comments Eldridge. “Over a shorter time-frame, consistency from individual suppliers is the key priority to get commercial-use graphene based products and systems onto the market.”

Read next

From the journal Translational Materials Research (TMR) –

AH_60What can 2D materials learn from 3D printing?
Analysing the trajectory followed by 3D printing suggests commercialization strategies for 2D innovators and could help bring graphene’s unicorn milestone forward by a decade.

TMR_60Graphene Connect underscores the importance of engaging SMEs in materials commercialization
European workshop series aims to accelerate the uptake of new materials by developers and quicken the translation of academic research into products

RH_60Lean startup for materials ventures and other science-based ventures: under what conditions is it useful?
Rainer Harms and his co-authors examine the lean startup approach as a framework for technology entrepreneurship

AC_60From composite material technologies to composite products: a cross-sectorial reflection on technology transitions and production capability
How do composite material technologies create growth and how do the properties of those materials influence production capability and manufacturability?

Argonne launches Nano Design Works to support materials commercialization and accelerate the translation of research into products

Argonne National Laboratory has launched Nano Design Works to amplify the impact of its expertise in nanotechnology. Last year, Argonne interacted with more than 600 companies, and hubs such as the Center for Nanoscale Materials offer developers a wealth of scientific knowledge and instrumentation.

Open for business
Dubbed a ‘concierge’ service, Nano Design Works caters for businesses of all sizes to match-make clients with Argonne expertise. “We work with industry partners to solve their enduring R&D challenges, identify commercialization opportunities, license new technologies, and introduce transformational discoveries to the marketplace,” Andreas Roelofs, director of Nano Design Works, told TMR+. “Project scale and duration is flexible, ranging from single-day solutions to multi-year investigations.”

A variety of funding mechanisms are available for companies to work with Argonne, including securing investment from government agencies and venture capital firms through collaborative proposals. “We think that bringing together the world-class resources of Argonne with the ability of companies to commercialize breakthrough science will be appealing to potential funders,” said Roelofs.

Drugs that use nanotechnology to target only cancerous cells while leaving healthy cells untouched; magnetic nanofibers that could create new, more powerful antennas or be used for novel sensors and dectectors; and nanodiamonds that combine with graphene to create nearly frictionless surfaces, are just a few examples of projects that Nano Design Works is currently engaged in.

Related links

Call for papers: Focus on 2D materials beyond graphene
Which applications are likely to benefit the most from emerging 2D materials and what distinguishing properties are required to enable novel functionalities or novel devices and products?

An interview with board member Peter Littlewood
National labs are well placed to work the middle ground between academia and industry to find solutions to big problems. Peter Littlewood, director of Argonne National Laboratory, talks about his approach to tackling major issues such as energy storage and sustainability.

US funding round up: multi-million dollar awards for flexible hybrid electronics, nanotechnology and advanced materials translation

It’s been a big couple of months for materials science funding in the United States. TMR+ rounds up the key announcements.

Flexible hybrid electronics
AUG 2015 – the US Department of Defense (US DOD) has awarded $75 million to the Flextech Alliance to establish and manage a Flexible Hybrid Electronics Manufacturing Innovation Institute (FHEMII).

The Flextech Alliance has created a map (JPEG format) of its 150+ partner network, which clusters around nano-bio; flex substrates; design, modelling and testing; equipment and materials; deposition and printing; CMOS thinning; packaging; and standards.

According to the announcement, the funding, which runs for five years, will be matched by more than $96 million in cost sharing from non-federal sources, including the City of San Jose, private companies, universities, several U.S. states, and not-for-profit organizations.

Beyond defence applications, other markets for flexible hybrid electronics include automotive, communications, consumer electronics, medical devices, health care, transportation and logistics, and agriculture.

SEP 2015 – the US National Science Foundation (NSF) is providing $81 million over five years to support 16 sites and a coordinating office as part of a new National Nanotechnology Coordinated Infrastructure (NNCI).

The NNCI framework is the successor to the National Nanotechnology Infrastructure Network (NNIN), which – as the program synopsis outlines – provided researchers from academia, small and large companies, and government with open access to university user facilities with leading-edge fabrication and characterization tools, instrumentation, and expertise within all disciplines of nanoscale science, engineering, and technology.

Advanced materials translation
SEP 2015 – Designing Materials to Revolutionize and Engineer our Future (DMREF) is the NSF’s ‘primary program’ for participating in the Materials Genome Initiative – a multi-agency initiative to accelerate advanced materials discovery and deployment by exploiting advances in computational techniques, and making more effective use of standards, and enhanced data management.

Recognizing the multi-disciplinary nature of the task, DMREF reaches across various NSF directorates including Mathematical and Physical Sciences; Engineering; and Computer and Information Science and Engineering.

DMREF funding consists of 20 – 25 grants of between $750,000 and $1,600,000 to develop, for example, new data analytic tools and statistical algorithms; advanced simulations of material properties in conjunction with new device functionality; advances in predictive modeling that leverage machine learning and data mining; and new collaborative capabilities for managing large, complex, heterogeneous and distributed data.

Related stories on TMR+
Materials by design: NIST announces consortium to speed up time from discovery to first commercial use
Show report: IDTechEx Printed Electronics Europe 2015 (Berlin)

MESA+ advanced materials spin-off receives EURO 1 million from Cottonwood Technology Fund to scale up ‘flexiramics’

Eurekite, an advanced materials spin-off from the University of Twente in the Netherlands that refers to its non-brittle, nanofibre-based products as ‘flexiramics’, has attracted a EURO 1 million investment from Cottonwood – a US venture capital (VC) firm with a European hub in Twente’s largest city, Enschede. The university start-up plans to use the VC funding to deliver prototypes based on its 100% ceramic materials, which were first developed at the MESA+ Institute of Nanotechnology, and to scale-up its operation.

Designer material: flexible 100% ceramic developed at MESA+ and available via Eurekite – a spin-off from the University of Twente. Image credit: Eurekite

Designer material: flexible 100% ceramic developed at MESA+ and available via Eurekite – a spin-off from the University of Twente. Image credit: Eurekite

“We have created a material that merges the properties of paper and ceramics,” says Eurekite co-founder Bahruz Mammadov (COO/CFO) who formed the company less than a year ago together with Gerard Cadafalch (CEO). Andre ten Elshof, a senior faculty member at MESA+, joins them as chief scientific officer. The team has strong connections to research programmes at the University of Twente investigating the properties of electrospun ceramic nanofibers. Based on promising results in the lab, the team decided to explore commercial opportunities for these tough and flexible nanomaterials.

Like conventional ceramics, Eurekite’s products don’t burn, but as the name suggests ‘flexiramics’ are much less fragile than traditional formulations and don’t shatter when dropped. The team hopes that this rugged combination of properties will inspire designers, and potential applications include high-temperature oil & gas sensors, flexible substrates for mobile phone antennas, lithium-ion battery energy performance upgrades, high-power electronics for electric vehicles and solar energy – to name just a few uses for ‘flexiramics’!

Ecosystem built for translation
As TMR+ witnessed on a tour of the region back in 2013, the University of Twente offers a healthy ecosystem for translating materials research from the laboratory through to the market. In addition to MESA+, local facilities include a prototyping environment (NanoLab) and the nearby High Tech Factory where early-stage companies can ramp-up to higher production volumes.

Related stories on TMR+
The dash for cash: a new funding landscape for high-tech start-ups
Gearing up for the commercialization of micro- and nanotechnologies

Related articles from the journal Translational Materials Research (TMR)
Sizing up your innovation ecosystem (Deborah Jackson 2014 Transl. Mater. Res. 1 020301)
Rethinking universities as innovation factories (Ralph M Ford et al 2014 Transl. Mater. Res. 1 016002)
A lab-to-market roadmap for early-stage entrepreneurship (Jesko von Windheim and Barry Myers 2014 Transl. Mater. Res. 1 016001)

Business school mines big data for clues on graphene commercialization

What can web scraping reveal about the commercialization of graphene? That’s the question Philip Shapira, Abdullah Gök and Fatemeh Salehi Yazdi have set out to answer using a mixture of computerized data mining and other analytical techniques.

The team, based at Manchester Business School, has chosen graphene as a ‘demonstrator’ to road-test its approach, which identifies patterns from publicly available information hosted on enterprise websites. The hope is that these methods can assist in providing ‘real-time intelligence’ to map the development of rapidly emerging materials and technologies.

In the pilot study, Shapira and his colleagues have focused on a set of 65 graphene-based small and medium-sized enterprises (SMEs) based in 16 different countries – 49.2% of the SMEs in the sample are located in North America, 15.4% in the UK, 18.5% in Western Europe and 16.9% in East Asia and emerging nations. The researchers acknowledge that they haven’t captured every graphene SME in every country, particularly in China, and note this under-representation should be kept in mind when comparing across the regions.

Presenting their findings in a Nesta working paper, the authors draw attention to the following –

  • Access to finance and the firms’ location are significant factors that are associated with graphene product introductions.
  • Patents and scientific publications are not statistically significant predictors of product development in their sample of graphene SMEs.
  • Graphene SMEs are focusing mainly on upstream and intermediate offerings in the value chain.
Relationship between different value chain positions of SMEs in the study. Credit: Nesta Working Paper 15/14

Relationship between different value chain positions – [equipment:11] [material:44] [intermediate:26] [final:2] – of SMEs in the study. Credit: Nesta Working Paper 15/14

Graphene advantage?
According to the data, the mention of other 2D materials on a company website turned out to be a significantly negative predictor of introducing a product into the market. “In other words, focusing on graphene was more likely to be associated with a product introduction – perhaps because other 2D materials are as yet further away from being ready for the market or because focusing on multiple materials in a resource-constrained SME might diffuse or slow down commercialisation capabilities,” comment the authors in their work.

Supporting movement up the value chain
As the researchers note, currently there is an emphasis in SMEs on producing advanced graphene materials, although many are signalling plans to develop more intermediate graphene products that should have higher value in the marketplace. Technology intermediary organisations are likely to be important in supporting these next stages of graphene development – examples include the UK National Graphene Institute, which opened in March this year, and its sister facility the Graphene Engineering Innovation Centre, which is planned for completion in 2017.

Full details
Graphene Research and Enterprise: Mapping Innovation and Business Growth in a Strategic Emerging Technology
Philip Shapira, Abdullah Gök and Fatemeh Salehi Yazdi – Nesta Working Paper No15/14, August 2015

Further reading in the journal Translational Materials Research (TMR)
Graphene Connect underscores the importance of engaging SMEs in materials commercialization
Sizing up your innovation ecosystem

Related stories on TMR+
$5 million investment in Angstron Materials accelerates graphene commercialization
Graphene Week 2015: industry opportunities and more

Elsewhere on the web
Graphene booms in factories but lacks a killer app (Nature news)

$5 million investment in Angstron Materials accelerates graphene commercialization

Angstron Materials, a US supplier of single and few-layer graphene materials, announced this week that it has secured $5 million in capital to increase manufacturing capacity and bring key technologies such as its thermal management products to market. Heat spreaders developed by the firm can reduce hot-spots in mobile phones and other handheld devices, and the funding news follows reports earlier this year that Angstron’s graphene sheets have been qualified for use by a major mobile electronics company.

Graphene foil

Thermal interface material: Angstron Materials supplies graphene-based sheets in thicknesses ranging from 5 µm to 40 µm with thermal conductivity between 800 W/m.K and 1700 W/m.K for use in electronic products such as tablets, laptops and flat screen TVs. The foils can also be used for EMI shielding.

Estimates by market analyst IDTechEx suggest that 55% of electronic failures are caused by over-heating, and enhanced thermal interface materials have a major role to play in helping devices to stay cool, perform better and last longer as developers boost their offerings by packing more processing power into increasingly compact form-factors.

“We use the planar alignment of carbon atoms to make a lightweight, flexible thermal foil with up to 1700 W/m.K in-plane thermal conductivity – substantially higher thermal conductivity than copper and offering weight savings for thermal management,” Claire Rutiser, a member of Angstron’s executive team, told TMR+. “Also, we can load thermally conductive nano graphene platelets (NGP) into a matrix – which could be thermoset, thermoplastic or non-curing (for thermal paste).”

Graphene isn’t the only option for device makers and competing thermal management materials include formulations based on silver flakes or silver nano-wires, but there are economic considerations that may favour the use of NGPs. “Silver is subject to significant price fluctuation and future price uncertainty,” Rutiser comments. “Angstron Materials has known input materials pricing and is able to enter into long term supply agreements with end users.”

Graphene has been linked with various big names in portable electronics. In 2011, Apple noted that the use of graphene thermal dissipators goes beyond cooling. Related applications include transferring heat from onboard electronics to the battery to improve runtime, which can be compromised at low temperatures.

Multiple markets
Rutiser says that Angstron is ready with scalable production capacity and emphasised that the firm is targeting other sectors in addition to thermal management materials. She’s optimistic that over a 10 year period energy storage will grow to become one of the company’s biggest sources of revenue. Driving this are developments in graphene-wrapped silicon anodes by sister company Nanotek Instruments, which allow fabrication of Li-ion batteries with over 400 Wh/kg, and also materials for supercapacitors.

“Affordable, high-capacity energy storage is critical for the transition to electric vehicles and for grid-stabilization as the percentage of energy derived from renewables increases in the coming decades,” Rutiser explained. “These products have comparatively long qualification times due to reliability testing and industry safety standards.”

Currently, Angstron’s graphene-enhanced products and technologies are linked to five distinct portfolios – thermal management materials, energy storage systems, nanocomposites, transparent conductive films, paints and coatings. “Graphene platelets are inert to most chemical species and offer opportunities to improve barrier coatings against corrosion, chemical attack, or oxygen permeation, “ added Rutiser.

Read next

Thermal interface materials: opportunities and challenges for developers (Rachel Gordon, Translational Materials Research)

Show report: IDTechEx Printed Electronics Europe 2015 (TMR+)

Supercapacitors: market factors to consider (TMR+)

Fullerex talks graphene pricing; identifies growth areas and supply targets (TMR+)

Graphene ‘quilts’ cool down transistors (

Partnerships and revenue models unlock opportunities for smart coatings

In its latest report on emerging technologies, Lux Research has put the spotlight on opportunities for smart coatings. The firm’s analysis highlights the power of partnerships in translating breakthroughs from the lab to the market, which has implications for start-ups in the field of advanced materials. To find out more, TMR+ spoke with Anthony Schiavo, an analyst at Lux Research and lead author of Surfaces Get Smarter: Scouting Emerging Coatings, Markets and Functionalities.

New roles beyond protection
“Today, coatings can do more than just provide protection,” said Schiavo. “They are finding new roles and replacing other components such as inspection systems.” Examples can be found in the US Navy, which has patented a resin that releases a distinct odour when broken. This feature can be exploited to alert crew members to corrosion and mechanical fatigue in out of sight areas of a ship or aircraft.

The Navy system has been designed with the human nose in mind, but there are automated solutions out there too. Another approach involves coating RFID tags with a conductive layer. “When the coating is damaged, the signal will propagate,” explained Schiavo.

Smart materials as a service
The oil and gas sector is another strong prospect for smart coatings, but as Schiavo points out – performance is only part of the picture. Materials suppliers need to pick the right revenue model to ramp up their business.

“Solutions will be more attractive to potential customers if providers can supply advanced materials and coatings as a service rather than a product,” he said. “Suppliers can lower the barrier to entry by tying the value of their products directly to performance, in this case an improvement in downtime figures, rather than attempting to sell tonnes of material outright in advance.”

Cost-benefit analysis
Winners in the consumer electronics segment include firms such as P2i, a provider of chemically bonded hydrophobic coatings, which allow device partners to add-value in highly competitive sectors such as the mobile phone market. “The differentiation you get on a raw technology basis can be very short-lived,” commented Schiavo. “Smart coatings help manufacturers to strengthen the appeal of their products.”

Other exciting firms to watch include LiquiGlide and SLIPS Technologies, which are positioned to impact packaging. Like P2i, their value proposition can be communicated in just a few seconds of video or by a quick product demo, which makes it much easier for these companies to pitch their technology to potential partners.

Read next –

Trajectories in translation: parallels between old and new materials (TMR+)

From protecting soldiers to protecting mobile phones (Stephen Coulson, Translational Materials Research)

Materials inspired by nature (

Singapore invests in start-up economy; offers support to materials translation

I was in Singapore last week to find out why the Asian city state ranks number seven in the Global Innovation Index – just behind the USA and well ahead of other regional heavyweights such as Hong Kong and Korea. One thing that impressed me in particular was the level of support offered to start-up companies at all stages of their development, largely through a string of initiatives introduced by the government agency SPRING Singapore. “Our goal is to help SMEs to become more resilient through better funding, by providing access to extended business networks and the infrastructure they need,” said Edwin Chow, SPRING’s executive director for innovation and start-ups.

Singapore skyline

Support network: SPRING Singapore has set up 12 SME Centres to provide business advisory services to enterprises on a range of topics including technology innovation.

Enabling enterprise
Chow is acutely aware that start-ups in materials science need extra support to transfer their ideas to market, since the private investment community is wary of taking on long-term projects where there is no certainty of success. “In materials science it takes more time and more money to develop the initial IP into an income-generating business,” he told me. “For digital start-ups it might take three to five years to reach an IPO, for materials-based companies it can take twice as long.”

That’s why SPRING is investing SGD75m (about £38m) to establish five accelerators focused on clean technology, and advanced manufacturing and engineering – which includes subsectors such as additive manufacturing, robotics, biomaterials and nanotechnology. “Accelerators can act as intermediaries to make riskier propositions more attractive for investors,” said Chow. “With this programme we’re offering the comfort of government backing for a certain length of time.”

SPRING is now inviting proposals from accelerators with proven investment expertise in the high-tech sector, and who will work with the agency to identify and evaluate high-potential start-ups. Accelerators selected through the scheme will be expected to match the funding available from SPRING, with the joint investment capped at SGD 4m for each new business.

Value-added incubation
One of the selection criteria will be a commitment to work closely with start-ups to shorten their time-to-market. As well as business mentoring and enterpreneurship training, accelerators will be tasked with helping new companies to develop customer networks and to secure the necessary infrastructure and resources. According to Chow, successful accelerators will be able to apply for funding to support these value-added incubation activities.

Interested accelerators can find more information online, and proposals should be sent by 6 August 2015 to Successful applicants will be appointed towards the end of 2015 or early 2016.

Related stories on TMR+

The dash for cash: a new funding landscape for high-tech start-ups

Related articles from the journal Translational Materials Research (TMR)

A lab-to-market roadmap for early-stage entrepreneurship – Jesko von Windheim and Barry Myers 2014 Transl. Mater. Res. 1 016001