5 ways to tackle materials translation and build better products

One of the highlights of the launch of Translational Materials Research (TMR) has been the opportunity to discuss the journey from lab to market in detail with the journal’s Editorial Board through a series of exclusive interviews.

Here are five key takeaways from the conversation so far -

Invest in fundamental research
“[When I started the Quantum Science Research Initiative] I wanted to have something big that would grab people’s attention and get them to understand that long term fundamental research can be a valuable corporate strategic asset,” revealed Stan Williams, Senior Fellow and VP of Foundational Technologies at Hewlett Packard Labs. “A lot of companies are now realizing that they have to invest more in innovation, and invest more broadly as a means of risk reduction.”

Build on a solid understanding
“Regardless of what you choose to do in the future, first you need to be the best scientist or engineer you can,” advised Zhenan Bao, Professor of Chemical Engineering and Materials Science at Stanford University, and co-founder of tech start-up C3-Nano. “You need to have a solid fundamental understanding that you can build on to develop the skills needed for solving problems, especially complex problems, as this will serve you well if you choose to start your own research group or technology company.”

Go large
“Having a well-defined big problem gives you a strategy to attack it. Of course, it branches as time goes on, but that strategy provokes a whole set of things that you need to do in order to reach your goal, and there can be unexpected pay-offs,” said Peter Littlewood, Director of Argonne National Lab.

Take a broad view
“One of the things that we do already is to look beyond the science problems and imagine what the system would look like,” Littlewood continued. “Could we build it? How heavy would it be? This is what we call ‘techno-economic modelling’, and we do this as part of the whole programme, which can mean that you decide to back-pedal on some of your initial ideas.”

Manage your ideas well
“You need an organizational structure with ‘low interfacial resistance’, which allows ideas to go from science to product development, and for people to move from one department or area to another,” commented Om Nalamasu, Chief Technology Officer of Applied Materials.

For much more on all of these and other key topics related to the translation of materials research into robust products and devices, visit issues #1 and #2 of the journal, which are now both live on IOPscience.

And don’t forget that you can receive TMR+ news alerts by joining our mailing list. It’s easy to sign up, just look for the “subscribe to email alerts” box on the journal’s companion blog, TMR+.

Related articles from the journal Translational Materials Research (TMR) -

An interview with board member R. Stanley Williams
An interview with board member Zhenan Bao
An interview with board member Peter Littlewood
An interview with board member Om Nalamasu

Online graphene course educates engineers in 2D materials


Materials MOOC: Introduction to Graphene Science and Technology (course preview)

Chalmers University of Technology, which coordinates the European Commission’s EURO 1 billion Graphene Flagship initiative, is launching a series of MOOCs – massive open online courses – beginning with an “Introduction to Graphene Science and Technology“.

Spread over 10 weeks, the graphene primer will be presented by Jie Sun of the Quantum Device Physics Laboratory, which is part of the Department of Microtechnology and Nanoscience at Chalmers.

“At the end of the course, an engineer should be able to determine if graphene is suitable for the company’s products, and a student should be able to decide if the subject is of interest for continued studies”, he explained.

To enrol, visit the edX platform, which also features online material from MIT, Harvard, UC Berkeley, Delft University, EPFL, The University of Tokyo and many other institutions.

The course is “free of charge and accessible to anyone with a computer” and starts on 23 March 2015.

Related stories on TMR+

Video highlights from Graphene Week 2014 (Gothenburg, Sweden)

Show report: Graphene supply, application and commercialization 2014 (Manchester, UK)

Hauser review recommends expansion in translational infrastructure

In a highly-awaited review of the UK’s Catapult network, Hermann Hauser – serial entrepreneur, venture capitalist and adviser to the UK Government – has updated conclusions on the UK’s ability to foster translational research that fills the void between early-stage publicly funded studies and industrially supported commercialization.

Back in 2010, Hauser highlighted the need for the UK to close the critical gap between research findings and their subsequent development into commercial propositions, and proposed a network of technology and innovation centres to “deliver a step change in the UK’s ability to commercialise its research.” Specifically, the centres would provide hubs of technical expertise, infrastructure, skills and equipment.

Fast-forward to today and seven of these centres or “Catapults” are now in operation –

With two more in the pipeline for 2015 –

In his 2014 report, Hauser is largely positive about the progress made since 2010, and recommends that Innovate UK should grow the network of Catapults at a rate of 1-2 centres per year, with a view to having 30 Catapults by 2030.

Full details can be found on GOV.UK

Related stories on TMR+

Show report: Metal additive manufacturing 2014 (Sheffield, UK)
Innovation in Europe: an update on Horizon 2020

DOE Lab-Corps builds on NSF I-Corps model to accelerate translation of clean energy technologies

The US Department of Energy (DOE) has announced a $2.3 million initiative to accelerate the transfer of innovative clean energy technologies from its national laboratories into the marketplace.

Dubbed Lab-Corps, the approach builds on the National Science Foundation (NSF) Innovation Corps (I-Corps) model and has been launched as a specialized technology accelerator and training curriculum that will enable teams to gain direct market feedback on their technologies and pursue the development of startup companies, industry partnerships, licensing agreements, and other business opportunities.

Over the next year, the pilot program will assemble, train, and support entrepreneurial teams to identify private sector opportunities for commercializing promising sustainable transportation, renewable power, and energy efficiency lab technologies. Each Lab-Corps team will receive comprehensive training and access to a suite of commercialization resources, including technology validation and testing, facility access, techno-economic analysis, and other incubation services.

For more information on the project and on the labs that are involved, visit Energy.gov.

Related stories on TMR+

NSF expands I-Corps innovation network for translating academic research into the market

Related articles from the journal Translational Materials Research (TMR)

Photocatalytic nanomats clean up produced water from fracking (P I Gouma 2014 Transl. Mater. Res. 1 025002)

Nanofabrication expert wins IOP award for translational physics research

A guest post for TMR+ by Douglas Paul, professor of semiconductor devices at the University of Glasgow and director of the James Watt Nanofabrication Centre

Douglas Paul was awarded the President’s Medal at the Institute of Physics (IOP) awards dinner on 15 October, in recognition of his achievements in translating physics research into advanced technology.

Acceptance speech

Madam President, Distinguished Guests, Ladies and Gentlemen, colleagues

I am extremely honoured to be standing here and accepting the President’s medal from the Institute of Physics.

After seeing past recipients have included Brian Cox, Tim Berners-Lee, Michael Atiyah and Lord Dainton you are probably all wondering who is Douglas Paul and why is he getting the President’s Medal?

I have always modelled my career on Louis Pasteur – undertaking research to solve major problems that at some level benefit society. This has not always got publications in the high impact journals that is required to advance ones career, but it has allowed me to interact with an enormous number of UK and international companies.

My PhD at Cambridge and my first funded research grant were both about finding ways to reduce the power consumption of the transistors in microchips. This work on strained-Si MOSFETs is now in every major microprocessor being produced today. I was one of the first to suggest straining channels but lost the race to be first to deliver high performance devices. The experience taught me a lot!

The EC funding for the work press-ganged me into compiling the Technology Roadmap for European Nanoelectronics in 1999. I had little idea it was going to be taken into the industrial International Technology Roadmap of Semiconductors forming the first Future Emerging Technologies chapter in 2005.

This got me my first interaction with the IOP when I ended up in the House of Lord’s giving evidence to the House of Lord’s Enquiry into “Chips for Everything” in May 2002. Later I became a member of the Science Board and helped to lobby government on science policy.

David King whilst GCSA to Tony Blair brought me into the Home Office CBRN Scientific Advisory Committee in 2004 after I had written a DTI report on security and medical imaging along with having DARPA funding for THz work.

Little did I realise when I said yes to being on this committee that it would be involved in the 7/7 bombing reviews, shoot to kill policy, airports liquids ban, Litvinenko and many other incidents not in the public domain.

I am frequently asked why a physicist is involved in so much security? National security requires technology that can detect threats – either imaging technology or sensors. The science is heavily based on quantum mechanics and electromagnetism and so physicists are essential to the National Security of the UK.

We have many examples of physicists in security in this room. Our President Francis Saunders, a physicist ended up as the Chief Executive of the UK’s Defence Scientific Technology Laboratory and Peter Knight who is also here tonight and a former president has chaired the MOD’s Defence Scientific Advisory Council (DSAC).

Indeed it was Peter who interviewed me when I became a member of MOD’s DSAC and we walked around Warminster with full body armour and a half pack to understand the problems dismounted solders were facing in Afganhistan. I have pushed with others trying to get a modern science and engineering capability around MOD and DSTL that can provide the UK with the scientific capability to meet the threats of tomorrow.

In 2007 I moved to Glasgow so that I could get access to a far better cleanroom for research than any of the ones in Cambridge. Three years later I became the Director of that cleanroom, the James Watt Nanofabrication Centre and within 2 weeks of landing the job had to develop a strategy and business plan to drive it forward.

It has been a delight to be Director and publicise some of the original research of my colleagues including the first directed STEM cell growth using nanopatterns – now in clinical trials for self-repairing hip-joint replacements, lab-on-a-pill (now spun out into a prostate cancer probe start-up) and the development of 10 nm III-V CMOS which may well be in everyone’s computers in 2019.

In the last 10 years, the James Watt Nanofabrication Centre has collaborated with over 288 companies in 28 countries worldwide including 12 of the top 20 semiconductor companies and 48 of the international universities in the Times Higher Education Top 100 International Universities list. We have also become two national facilities, one for EPSRC and one for STFC plus we are now a strategic partner of DSTL and have been a major supplier to NPL in a range of areas including their atomic clock work. Indeed most of the pretty pictures of magneto-optical traps and Penning traps from NPL published in the FT and elsewhere have been devices made in the cleanroom at Glasgow.

The UK has been particularly poor at translating research into products. At present, most UK academics get far better rewards from the Research Excellence Framework and their universities for a Nature or Science publication than for transferring IP into a UK company. Until this is changed and translating IP has a larger value than publications then Great Britain will only be great at science and will not be great at translating the science into products that help the British companies and the British economy that actually funds the research in the universities.

Studying Physics has been a great enjoyment and allowed me to pursue research, but also provide a service to society by advising Government Ministers about National Security. But research is my first love and at the moment I am still having great fun playing with phonon and electron bandgaps to engineer improved thermoelectrics to harvest waste heat from cars to reduce CO2 emissions and trying to detect utilities under the street through making gradiometers with MEMS and Si photonics technology to reduce roadwork delays.

As I stand between everyone and dinner, I will stop here but leave you with a poem that I have had on the wall of my office for many years and has really been the vision and inspiration to keep me going, especially on those difficult days when it appears none of the research seems to be moving forward.

Different

Not to say what everyone else was saying
not to believe what everyone else believed
not to do what everybody did.
then to refute what everyone else was saying
then to disprove what everyone else believed
then to deprecate what everybody did,

was his way to come by understanding

how everyone else was saying the same as he was saying
believing what he believed
and did what doing.

Clere Parsons (1908 – 1931)

Related stories -

‘Work with us’, IOP president tells physics community in Awards Dinner speech (IOP)

Show report: Commercialization of micro, nano, and emerging technologies – COMS 2014 (Salt Lake City, Utah)

Through its flagship COMS event, MANCEF brings together academia and industry to promote the commercialization of micro-, nano- and emerging technologies, and encourage entrepreneurship. This year, the conference was hosted and co-organized by the Center for Engineering Innovation at the University of Utah. In his welcome address, Tom Parks, vice president for research, emphasized that spin-outs are a key part of the university landscape. “Enterpreneurship offers career development for faculty and students,” he explained. “It’s not just about the money, there are longer term benefits.”

alt here

Opening remarks: Steve Walsh (University of New Mexico), Florian Solzbacher (University of Utah) and Maggie Janat-Amsbury (nanoUtah) welcome attendees to COMS 2014

Talking venture capital
As regular attendees to the conference will know, COMS is a practical meeting featuring a mix of talks and Q&A events designed to explore the process of taking a product to market, finding new customers and identifying development partners. Highlights on day one included the investor and venture capital panel discussion chaired by David Blivin of Cottonwood Technology Fund. In the session, funders described what they look for in a start-up and panel members included James Smith, who helped run the CIA’s venture fund dubbed In-Q-Tel.

Smith likes to see start-ups with a clear product definition and a data sheet to go with it. He’s encouraged when founders know who their customers are and have orders on the horizon, which reduces the risk for investors. Even with these points ticked off, uncertainty remains in the ability of an early-stage company to deliver. The panel agreed that a start-up’s technology lead needs to be aware of the different skill sets required for the journey beyond the lab. “It’s unlikely that a founder will take a company from cradle to grave,” commented Todd Stevens of Renewable Tech Ventures, who also sat on the panel. Like many investors he looks not just at the technology, but also at the people leading the project. “Market conditions may change and the management team needs to be able to adapt,” Stevens told the audience. Smith added that it’s important for founders to be self-aware and know their limitations. As the panel highlighted, one way for a firm to expand its expertise is by forming strategic partnerships to help with tasks such as manufacturing scale up and distribution.

alt here

Supporting technology translation: Deborah Jackson of the National Science Foundation (NSF)

Promoting innovation
Spurred on by the theme of the morning plenary session on day two – The new age of materials: why translation matters – given by George Grüner of UCLA, attendees gathered after lunch for the sequel event chaired by the journal Translational Materials Research (TMR). Deborah Jackson of the National Science Foundation (NSF) spoke first on sizing up your innovation ecosystem and pinpointing strengths and weaknesses so that appropriate support can be provided. “We don’t try to apply the silicon valley model across the board,” she explained.

Joining Jackson on the programme were Fiona Jamieson of the Institute of Physics (IOP), who presented key findings on graphene commercialization in the UK and Europe, and Deb Newberry of Nano-Link, who updated on progress being made in upskilling workers for careers involving nanotechnology. To close the popular session, Xiao Zhang of Hitachi High Tehnologies, reported his team’s work on upgrading TEM apparatus to operate under industrially relevant conditions, which he hopes will accelerate the translation of materials discoveries into robust products and devices.

alt here

Prize-winning technology: Bernd Vinke of Tide Microfluidics receives both audience and judges prizes at the 2014 Young Technology Award.

Show time
Evening entertainment at COMS includes the Young Technology Award where attendees get to vote on a series of 3 minute pitches given by entrepreneurs attending the conference. This year, the audience and the judging panel were in agreement as Dutch start-up Tide Microfluidics, which has developed a platform for producing highly monodisperse microbubbles for applications in medical imaging and drug delivery, won both prizes and grabbed valuable media attention along the way (see news links and tweets below).

For more information on COMS and for announcements on the 2015 event, visit the MANCEF website.

Related stories -

COMS 2014 big success for local and international researchers (College of Engineering, University of Utah)

Tide Microfluidics grote winnaar van de COMS/Young Technology Award 2014 in Salt Lake City (Powered by Twente)

Related articles from the journal Translational Materials Research (TMR) -

Editorial: Welcome to Translational Materials Research (George Grüner 2014 Transl. Mater. Res. 1 010101)

From the VC desk: striking a balance on focus (Andrew Haughian 2014 Transl. Mater. Res. 1 010202)

Related news on Twitter -

Energy and health solutions: TMR+ arrives in Salt Lake City ready for COMS 2014

Event location for COMS 2014

Venue with a view: Grand America hotel and conference facility, Salt Lake City, Utah, US

TMR+ is in Utah this week for COMS 2014 – a key conference on the lab-to-market events calendar looking at the commercialization of micro, nano and emerging technologies. The four day meeting, which was held in Europe last year, focuses primarily on entrepreneurship and marketable solutions, not just science and technology. And with its Young Technology Award and accompanying bootcamp session for entrants, the event takes a hands on and practical approach to guiding entrepreneurs from university spin-outs and early-stage companies.

The conference features lab and company visits, and a series of plenary sessions examining the commercialization process from first idea to final product. Keynote speakers at this year’s meeting include George Gruner of UCLA, who will be commenting on the search for application-relevant materials and changes in the research landscape.

Building on these themes, Translational Materials Research (TMR) is chairing a session – The New Age of Materials: Why Translation Matters (Track C4) – featuring Deborah Jackson from the National Science Foundation (NSF), Fiona Jamieson – science and innovation officer at the Institute of Physics (IOP), Deborah Newbury from the Nano-Link Center, and Xiao Feng Zhang of Hitachi High Technologies.

The event runs from Sunday 12 October through to Wednesday 15 October

Registered and ready to go: TMR+ will be posting highlights from COMS 2014

The full COMS 2014 programme is available online and I’d encourage you to come along to the conference if you’re in the area on Monday 13th, Tuesday 14th or Wednesday 15th of October.

Show report
If you’re unable to attend, but still want to follow the meeting then register for updates on TMR+ as we’ll be posting a show report for COMS 2014. It’s easy to sign up, just look for the “subscribe to email alerts” box on TMR+.

Lightning lab to offer full waveform testing by end 2014

Aerospace is a prime destination for materials that are both light and strong, but that’s only part of the story. Translating promising materials into production aircraft brings additional selection criteria into play such as the ability to survive lightning strikes. To find out more, TMR+ visited the Morgan-Botti Lightning Laboratory in Cardiff, Wales – one of the world’s leading facilities in this area.

Zap: high-speed video stills showing a composite panel under test. Credit: Morgan-Botti Lightning lab.

Zap: high-speed video stills showing a carbon composite panel under test. Credit: Morgan-Botti Lightning lab.

The primary focus of the £1.6 million centre, which was set up by Cardiff University in collaboration with AIRBUS Group Innovations, is on the electromechanical characterization of carbon composites, and its goal is to understand and develop safer and more lightning resilient materials.

Using banks of giant capacitors and resistor stacks, the custom-built lab can generate lightning strikes based on protocols such as the EUROCAE ED-84 Aircraft Lightning Environment and Related Test Waveform Standard.

Hot spots
Directing the centre’s activities is Manu Haddad from Cardiff University. In the tour, he explained that the tips of the aircraft such as the wings or nose tend to be targets for the initial strike, but because the plane is in motion the main fuselage will also likely come into contact with the discharge and needs to be protected too.

Samples from Morgan-Botti lightning lab

Test results: carbon composite samples with and without copper mesh (inset).

Today, aircraft makers such as Airbus and Boeing use a copper mesh bonded to the skin of the carbon composite material to disperse the energy from the lightning strike, but this adds weight – typically an extra 3% – and so developers are motivated to optimize their designs and find lighter-weight alternatives.

The lab’s measurement chamber is kitted out with thermal and high-speed cameras to evaluate the dynamic performance of test pieces, and the facility has access to a range of other characterization equipment including scanning electron microscopes.

Electromagnetic issues
Without protection, the top layers of the composite are ripped from the surface as the local area jumps in temperature, which risks overall mechanical failure. Also, designers need to consider the damage caused by electromagnetic radiation penetrating the material, where it could disrupt sensitive equipment below such as wiring loops or sensors.

Resistor stack and capacitor bank for generating lightning waveforms.

Resistor stack and capacitor bank for generating lightning waveforms.

Haddad illustrated how aircraft parts can be modified by showing a composite nose cone fitted with aluminium strips on either side to draw lighting strikes away from the radar equipment often housed in this portion of the plane.

Airbus is a major research partner and played a key role in the lab’s founding back in 2007 together with support from the Welsh government, but today the facility is supporting more than just the aerospace industry. “Wind turbines also need to be protected and we’re working closely with the energy sector on this,” commented Haddad.

Networking opportunities
To encourage collaborative research on the direct effects of lightning on emerging materials, Cardiff University is co-ordinating an international network of academic and industry partners dubbed EMC3 (Electro-mechanical characterization of carbon composites).

For more details on the lab and on becoming a member of the EMC3 network, contact Haddad and his team – lightning.engineering.cf.ac.uk/contact-us.html

Related reading

Lightning Hazards to Aircraft and Launchers (Aerospace Lab – Issue 5)

Lightning strike protection strategies for composite aircraft (Composites World)

AGU Fall Meeting 2014: Lightning never strikes twice? (blog.environmentalresearchweb.org)

Related links -

Advanced High Voltage Engineering Research Centre (Cardiff University)

Video archive – lightning tests (Morgan-Botti Lightning Laboratory)

Registration opens for Young Technology Award bootcamp at COMS 2014, Utah

MANCEF’s commercialization of micro, nano, and emerging technologies conference (COMS) gives early-stage companies in these fields the opportunity for expert feedback through its Young Technology Award.

In 2014, the event takes place in Salt Lake City, Utah, and is hosted by the Center for Engineering Innovation.

Young Technology Award timetable

  • Sunday 12 October 2014, noon to 7 pm – expert bootcamp and pitch training
  • Tuesday 14 October 2014, from 6:30 pm – top six entrants go through to the Young Technology Award final held at the Natural history museum of Utah.

Focus on materials translation
Other highlights in the COMS 2014 program include a session chaired by the journal Translational Materials Research (Track C4 – Tuesday 14 October, 2 pm) looking at progress in the commercialization of devices based on graphene, and exploring the acceleration of materials translation through innovation ecosystems.

Related stories -
Gearing up for the commercialization of micro- and nanotechnologies (TMR+)
Show report: COMS 2013 (nanotechweb.org)

NSF expands I-Corps innovation network for translating academic research into the market

The National Science Foundation (NSF) is further extending its popular I-Corps innovation network with nodes in Texas and Southern California.

Now in its 4th year, the I-Corps program brings together academic researchers, student entrepreneurs and business mentors to focus on the transition of technology from the lab to the market. The scheme features a mandatory I-Corps curriculum that examines the transfer of knowledge into products and processes that benefit society, and introduces the concept of a Lean LaunchPad.

To fulfil the latest expansion, the NSF has awarded two grants of $3.75 million, each over three years, to consortia based in the two regions. The Southern California node will be based at the University of Southern California (USC) and includes the University of California Los Angeles and the California Institute of Technology (Caltech). The Texas hub, known as the Southwest Alliance for Entrepreneurial Innovation Node, will be based at the University of Texas at Austin and includes Rice University and Texas A&M University.

Existing I-Corps regional nodes –

  • Washington, D.C.
  • New York City,
  • Michigan,
  • Northern California
  • Atlanta

New additions to the network –

  • Southern California
  • Texas

Accelerating biomedical innovations
Earlier this year the NSF joined forces with the National Institutes of Health (NIH) to deliver a program aimed at accelerating the translation of biomedical innovations into applied health technologies, which goes under the name of The I-Corps at NIH.

Related links

Video: team members describe the I-Corps experience (NSF)

UT, A&M, Rice Form NSF hub to move ideas to marketplace (University of Texas at Austin)

USC teams with UCLA and Caltech on federally funded innovation hub (University of Southern California)