Graphene Connect: bridging academia and industry

As Europe’s Graphene Flagship enters its third year, we highlight how the programme is supporting the commercialization of 2D materials through Graphene Connect – a series of interactive workshops that bring industry and academia together.

“I think the Graphene Connect workshop we attended was a great opportunity to measure the pulse on the applications,” said Amer Ali, CEO of Graphensic AB – a Swedish company producing graphene on silicon carbide. “At the event, we got in touch with skilled researchers and industry incumbents who were genuinely interested in what we do.”

Biomedical briefing
Kostas Kostarelos, who leads the Nanomedicine Lab at the University of Manchester, UK, was a keynote speaker at Graphene Connect’s most recent workshop, which took place in February and showcased opportunities for 2D materials in biomedical technology. “The workshops are so important because they help to give companies a better understanding of graphene and how it can shape their roadmap going forward,” he explained.

More workshops planned for 2016: the organizing team is in the process of finalizing the next graphene connect event and will be announcing full details shortly on their website.

Applications discussed at the February workshop included smart clothes, sensor systems, wearables, packaging, electrodes and other ways that graphene can be used within the body. The events also provide the opportunity for a wider conversation on 2D materials.

“I wanted to understand more about the ‘translational potential’ and associated risk of graphene as well as the medical applications,” added Daniel Chew, Director of Neural Interfaces for GlaxoSmithKline. “Attending Graphene Connect helped to answer a lot of my questions and it was really good to see a wide interest in graphene from different industry sectors.”

Hot topics
The first Graphene Connect event took place in 2014, as part of Graphene Week, and themes covered so far by the workshop series include – nanocomposites, sensors, energy, optoelectronics and photonics, materials and production, investment opportunities and, as mentioned above, biomedical technology.

Further reading
Graphene Connect underscores the importance of engaging SMEs in materials commercialization (Translational Materials Research)
Graphene Week 2015: industry opportunities and more (TMR+)

Meet the Translational Materials Research team at MRS Spring 2016

Translational Materials Research (TMR) will be exhibiting at the upcoming MRS Spring Meeting in Phoenix, Arizona, US. You can find the team at booth #326 on the exhibit floor, and we’ll also be attending the lab-to-market focused Technology Innovation Forum X and iMatSci showcase events on Tuesday 29 and Wednesday 30 March 2016.

TMR-coverTMR engages with readers and authors who are dedicated to transforming scientific advances into real-world applications. Its audience includes researchers working academic and government labs; scientists and engineers conducting industrial R&D; the venture capital community; funding agencies and policy-makers.

The journal enables authors to document the impact of their work, highlight their technology transfer achievements and contribute to the body of knowledge on translating scientific advances into robust products and devices.

For examples, please visit the latest TMR lab-to-market highlights collection

To explore article ideas in more detail and for feedback on manuscript outlines, please contact the team via the TMR journal mailbox so that we can respond promptly to your request.

Alternatively, you can submit your article directly via the TMR author gateway.

Read next

From the journal Translational Materials Research (TMR) –

RH_60Lean startup for materials ventures and other science-based ventures: under what conditions is it useful?
Rainer Harms and his co-authors examine the lean startup approach as a framework for technology entrepreneurship

AC_60From composite material technologies to composite products: a cross-sectorial reflection on technology transitions and production capability
How do composite material technologies create growth and how do the properties of those materials influence production capability and manufacturability?

Focus on innovation: new episodes of NBC Learn update on batteries built using viruses and explore biomedical applications of 3D printing

Science of Innovation – a video series – documents how researchers “imagine, invent, improve and inspire” to deliver solutions in health care, energy storage and transportation, to highlight just a few of the sectors mentioned.

Launched in 2012 to celebrate the 165th birthday of Thomas Edison, the videos are produced by NBC Learn in partnership with the National Science Foundation and the United States Patent and Trademark Office.

New episodes
This month, the team has added six more episodes, including clips on the work of Angela Belcher at MIT, and also featuring Adam Feinberg’s group at Carnegie Mellon University.

Belcher’s use of genetically engineered viruses to grow better batteries is the application that often hits the headlines, but her team is also looking at using the technique to improve solar cells, fuel cells, biofuels and cancer therapies. Feinberg is part of the research community applying 3D printing to solve challenges in healthcare, which includes accelerating drug development and advancing personalized medicine.

Device applications for genetically engineered viruses

Overcoming challenges in 3D bioprinting

More videos in the Science of Innovation series
Other topics featured in the new episodes include the microfabrication of cochlear implants; the use of friction stir welding as a tool for tailoring the strength of metallic components; the application of origami structures to enable the transport and easy deployment of large area devices (such as solar arrays); as well as the development of microcontrollers for virtual reality displays.

Read next
An interview with Gabor Forgacs: from theoretical physics to the business of 3D bio-printing (published in the journal Translational Materials Research)

Open for submissions: TMR focus collection on biomaterials
Guest Editor – Subbu Venkatraman, Nanyang Technological University, Singapore
Since the early days of the artificial hip joint, when metallic, polymeric and even ceramic biomaterials were first implanted as hard-tissue replacements, both natural and synthetic biomaterials have become increasingly important for prolonging as well as improving our quality of life. Building functional body parts from many different material types is now commonplace; transplanting these parts with long-term survivability have become reasonably safe procedures for surgeons. Some of these technologies have progressed so far that the concept of a ‘bionic man’ with several replacement body parts is no longer confined to the world of science fiction [more details].

Related stories
Virus creates nanoelectrode for battery (

Flexible electronics: using laser confocal scanning microscopy to optimize interconnect design

Olympus has released an application note showing how optical metrology can be applied to improve the lifetime and performance of flexible electronics.

The study highlights the work of Dario Gastaldi and his team at the Politecnico di Milano, Italy, who have used laser confocal scanning microscopy to demonstrate how particular interconnect geometries are more resistant to delamination.

Optimizing interconnect design: micro-tensile testing device coupled to an Olympus laser confocal scanning microscope

Optimizing interconnect design: micro-tensile testing device coupled to a laser confocal scanning microscope

The group’s apparatus features an in-situ micro-tensile testing device coupled to high-resolution imaging equipment (Olympus LEXT OLS4100) and allows the researchers to examine the two main features that have been found to affect adhesion between the interconnect and polymer substrate: geometric parameters and the fabrication process itself.

Design tool
Observing the interconnects under mechanical testing allows the team to focus on key parameters such as strut length and obtain quantitative information, which can be fed back into the design cycle. 3D optical profiles of interconnect geometries allow developers to monitor samples for signs of surface cracking, which can be used to optimize manufacturing processes.

In the work, the researchers observe that plasma treatment of polymers, while increasing adhesion, may promote cracking.

Related links
Lab to market highlights: TMR anniversary collection (free to read)
Flexible and Printed Electronics – a new journal from IOP Publishing

Mobile World Congress 2016: a big opportunity for graphene

How can 2D materials help mobile device makers and equipment providers to upgrade their core products and grow their business in emerging markets such as wearable technology and the internet of things (IoT)? Visitors at this year’s Mobile World Congress (MWC) will have the chance to find out thanks to the Graphene Pavilion – a live demo space dedicated to 2D materials that makes its debut at the 2016 show (22-25 Feb). Applications on the radar include better batteries and portable power packs, flexible conductive films for touch and other device functions, solutions for network infrastructure, improved sensors and electromagnetic components.

Technology showcase
The Mobile World Congress is the biggest event on the communications industry’s calendar (over 94,000 people visited the show in 2015) and provides a huge opportunity for the graphene community to pitch its breakthrough materials to key customers in the supply chain. At the event, materials providers and leading researchers will be on-hand to discuss how graphene and its derivatives can be integrated into next generation devices and update attendees on the latest scientific results.

Presenters at the Graphene Pavilion include Aixtron, Avanzare, AMO, FlexEnable, GNext, Graphenea, Libre SRL, nVision and Zap&Go, the University of Cambridge, Chalmers University of Technology, the University of Manchester, ICFO – The Institute of Photonic Sciences, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CNR National Research Council and the Italian Institute of Technology.

Lab to market
Recognising that the mobile industry has much to gain from transformative materials, the congress organizers have invited Nobel Laureate Konstantin Novoselov to give a keynote presentation at this year’s event, and scheduled a panel discussion to highlight major opportunities on the horizon.


Graphene Flagship
Mobile World Congress 2016

Read next

Graphene Week 2015: industry opportunities and more (TMR+)
Graphene Pavilion: Day one (Graphene Flagship News)

Fullerex updates bulk graphene pricing report; highlights market opportunities for 2D materials

What are the price points that graphene and its derivatives need to hit to access market opportunities in composites, lubricants, 3D printing, concrete and other target applications? Who are the leading global suppliers and what are the sweet spots for the various grades of the material, which range from few-layer sheets to much larger stacks of graphene nanoplatelets?

Fullerex, an advanced materials and technology brokerage, which works with nanomaterial producers and end-users to support applications development and commercialisation, has set out to answer these questions and more in its annual bulk graphene pricing report, now updated for 2016.

Supply landscape: the number of companies offering bulk graphene compared with providers of thin-film material (source: Fullerex)

Supply landscape: the number of companies offering bulk graphene compared with providers of thin-film material (source: Fullerex)

Bulk graphene is offered by producers as a functional filler to improve the properties of base materials. These additives can be sold into a wide range of industries, but which sectors offer the strongest prospects for suppliers?

Business case
One of the fastest moving opportunities for graphene producers is the emerging 3D-printing market. Suppliers of FDM 3D printing consumables in Europe and the US are facing competition from Chinese firms producing spools at lower cost. “Established companies need to differentiate their products to protect their margins and nanomaterials provide a way to do this,” Tom Eldridge, director at Fullerex told TMR+. “Adding graphene can make the filament conductive or high strength and expands the number of applications that 3D-printed parts can address.”

With relatively few materials to choose from, the 3D printing community has a healthy appetite for new products to print with, which plays well for graphene producers. The downside is that the volume of nanomaterials required is likely to be relatively low, so graphene suppliers will need to look to larger markets to justify investments in scaling up facilities.

Longer term, one of the biggest opportunities for bulk graphene could be in construction. “Concrete is the second most consumed material after water and represents a potentially huge market for graphene in terms of volume, but it will be much tougher for producers to demand premium prices,” Eldridge points out. “In this sector, it’s essential to get costs down so that your material is as competitive as possible and to achieve a favourable price-to-performance ratio,”

The benefits of adding graphene to concrete include improvements in compressive strength and flexural modulus, but the nanomaterial could also deliver sensor properties and assist in the detection of micro-cracks to monitor the ‘health’ of a structure.

To break into target markets large and small, graphene producers need to get a handle on which applications are going to make the most commercial sense to potential customers. There are other issues too. “Standardization is on everyone’s mind, and is being worked on,” comments Eldridge. “Over a shorter time-frame, consistency from individual suppliers is the key priority to get commercial-use graphene based products and systems onto the market.”

Read next

From the journal Translational Materials Research (TMR) –

AH_60What can 2D materials learn from 3D printing?
Analysing the trajectory followed by 3D printing suggests commercialization strategies for 2D innovators and could help bring graphene’s unicorn milestone forward by a decade.

TMR_60Graphene Connect underscores the importance of engaging SMEs in materials commercialization
European workshop series aims to accelerate the uptake of new materials by developers and quicken the translation of academic research into products

RH_60Lean startup for materials ventures and other science-based ventures: under what conditions is it useful?
Rainer Harms and his co-authors examine the lean startup approach as a framework for technology entrepreneurship

AC_60From composite material technologies to composite products: a cross-sectorial reflection on technology transitions and production capability
How do composite material technologies create growth and how do the properties of those materials influence production capability and manufacturability?

Software defined sensing: materials developers deploy digital toolkit to access fast-moving markets

Fast-moving opportunities for sensors such as the internet of things (IoT) require a swift approach to translating devices from the lab to the market.

“To move more rapidly and take advantage of the largest growth opportunities in sensors, developers are rethinking the use of new material technologies, and finding places where software can accelerate or even replace steps in the process,” explains Mark Bünger, Vice President of Research at Lux Research, in the latest issue of the journal Translational Materials Research (TMR).

Mark Bünger, Vice President of Research at Lux Research

Mark Bünger, Vice President of Research at Lux Research

Building blocks
Thanks to success of mobile phones and other portable electronics, device-makers have a wealth of sensors such as cameras, microphones and accelerometers to choose from. Pairing these tried and tested components with software can, in many cases, emulate the functionality of much more complex set-ups and provide a swift solution for developers.

Readily available building blocks also include gyros and fingerprint scanners as well as Geiger counters, LIDAR, RFID and FTiR development kits, many of which are supported by online tutorials to aid rapid prototyping.

There are other benefits too, as Bunger points out in the article –
“Off the shelf sensors carry lower technology risk and cost, and the system can be easily upgraded with new software, as we improve our understanding of the phenomena being sensed.”

Today, software defined sensing is addressing a range of applications, for example –

  • accelerometers can replace heart rate monitors and other devices for fitness/health tracking,
  • depth cameras recognize gestures and can replace touchscreen user-interfaces on consumer electronics,
  • microphones recognize speech and sounds (for example – something burning on stove or the front door opening) for smart home applications.

Full details
To find out more about how device makers and materials designers are fast-tracking the journey from prototype to product, and for an overview of the software defined sensing landscape from a company perspective, read – Accelerating sensor development to the speed of light (Mark Bünger 2015 Transl. Mater. Res. 2 040301).

Related articles

GG_60Before entering the valley of death
Evaluating second-generation attributes is a necessary step in the discovery process explains George Grüner, Editor-In-Chief of the journal Translational Materials Research (TMR)

ON_60An interview with TMR board member Om Nalamasu
Om Nalamasu, CTO of Applied Materials, offers an industrial perspective on managing innovation, and sets the scene for a 21st century of materials

A hype-chart for next-gen batteries: mapping the translation of beyond lithium-ion chemistries from lab to market

Reporting their results in the journal Translational Materials Research, scientists in the US and Germany have monitored research output to assess the prospects for emerging electrical energy storage systems such as Li–air, Li–sulphur and Na–air.

“The reliance of modern electronics and vehicular transportation on rechargeable batteries does not guarantee the acceptance of any new system, even if it is more energy-dense,” caution the authors in their paper. “Cooperation between battery manufacturers and device manufacturers will be important, as will be the creation and support of a dependable supply chain to ensure consistent and sustainable delivery of raw materials of high quality.”

Technology tracking
To quantify the status of emerging rechargeable battery technologies, the researchers examined the popularity of each system within the scientific community based on year-by-year publication statistics. From the data, the team was able to identify critical points such as the ‘innovation trigger’ and other characteristic development phases.

Caption goes here

Hype chart derived from publication data showing the status of current and emerging high-energy-density battery systems. A typical technology goes through five phases as it matures and products cycle through different iterations: (i) innovation trigger, (ii) peak of inflated expectations, (iii) trough of disillusionment, (iv) slope of enlightenment and (v) plateau of productivity.

Full details
To find out more about battery design, development and the fundamental materials challenges, view –
Quantifying the promise of ‘beyond’ Li–ion batteries – Oleg Sapunkov et al 2015 Transl. Mater. Res. 2 045002.

Related stories on TMR+

$5 million investment in Angstron Materials accelerates graphene commercialization

Argonne launches Nano Design Works to support materials commercialization and accelerate the translation of research into products

Argonne National Laboratory has launched Nano Design Works to amplify the impact of its expertise in nanotechnology. Last year, Argonne interacted with more than 600 companies, and hubs such as the Center for Nanoscale Materials offer developers a wealth of scientific knowledge and instrumentation.

Open for business
Dubbed a ‘concierge’ service, Nano Design Works caters for businesses of all sizes to match-make clients with Argonne expertise. “We work with industry partners to solve their enduring R&D challenges, identify commercialization opportunities, license new technologies, and introduce transformational discoveries to the marketplace,” Andreas Roelofs, director of Nano Design Works, told TMR+. “Project scale and duration is flexible, ranging from single-day solutions to multi-year investigations.”

A variety of funding mechanisms are available for companies to work with Argonne, including securing investment from government agencies and venture capital firms through collaborative proposals. “We think that bringing together the world-class resources of Argonne with the ability of companies to commercialize breakthrough science will be appealing to potential funders,” said Roelofs.

Drugs that use nanotechnology to target only cancerous cells while leaving healthy cells untouched; magnetic nanofibers that could create new, more powerful antennas or be used for novel sensors and dectectors; and nanodiamonds that combine with graphene to create nearly frictionless surfaces, are just a few examples of projects that Nano Design Works is currently engaged in.

Related links

Call for papers: Focus on 2D materials beyond graphene
Which applications are likely to benefit the most from emerging 2D materials and what distinguishing properties are required to enable novel functionalities or novel devices and products?

An interview with board member Peter Littlewood
National labs are well placed to work the middle ground between academia and industry to find solutions to big problems. Peter Littlewood, director of Argonne National Laboratory, talks about his approach to tackling major issues such as energy storage and sustainability.

Infographic: smart materials classified by application and development stage

Lux Research has tracked the translation of smart materials from the lab to the market in its latest report – ‘Get Smart: smart materials as a design paradigm’ – examining advances in the development of smart materials and their adoption by industry.

Smart materials from lab to market: classes, applications and development stages [image credit: Lux Research]

Smart materials from lab to market: classes, applications and development stages – for a larger version of the infographic, click on the image [image credit: Lux Research]

Long incubation times, but rapid commercialization when conditions are right
As you’ll discover by reading TMR+ (most recently in this month’s story on OLEDs) – translating promising results into a robust products can take decades and smart materials are no exception, according to the Lux analysis.

What’s also interesting to note is the rapid pace of commercialization once market conditions are right – pieozelectric materials are a great example. This class of materials was long relegated to niche applications before booming due to adoption in mainstream products such as inkjet printers, digital cameras and smartphones, as Anthony Vicari – lead author of the report – points out.

Related reading on TMR+
Partnerships and revenue models unlock opportunities for smart coatings
Trajectories in translation: parallels between old and new materials